Ordered Data Structures:
Grids, Queues, and Stacks

What’s an example of “ordered data” that you’ve
encountered in your life?

(Also grab a mask from the back desk if you don’t have one!)

https://pollev.com/cs106bpoll

Examples of ordered data

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Object-Oriented
Roadmap Programming

C++ basics

vectors + grids arrays

dynamic memory

stacks + queues
management

sets + maps linked data structures

real-world
algorithms

Life after CS106B/

recursive
problem-solving

Midterm

Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

Life after CS106B/

Roadmap

C++ basics

vectors + grids
stacks + queues

sets + maps

Life after CS106B/

“Map” of the “container store”

vectors + grids

stacks + queues

sets + maps

“Map” of the “container store”
Ordered data

sets + maps

“Map” of the “container store”
Ordered data

sets + maps

Unordered data

“Map” of the “container store”
Ordered data

sets + maps

TOday’S When is it appropriate to

use different types of

guestion ordered data structures?

1. Review
Today'’s
topics

2. Grids

[2.5 GridLocation + structs]

3. Queues

4. Stacks

Review

(vectors and pass-by-reference)

Containers, or Abstract Data Types, or Data Structures

e Containers are powerful abstractions that allow programmers to store data in
predictable, organized ways.

e As the user, you get certain guarantees about the functionality of the container
& the properties of the data inside that specific container.

e You can use ADTs without understanding the underlying implementation!

o That’s abstraction!

Note: while we specifically

use ADTs from the Stanford
C++ libraries, these
principles transcend

Stan Or . language boundaries

TheAcontain

€t Stora

T L 4
: :

[e 'i i 1:FI[1;‘““.
: - v TN R

-

Y

Vectors

Our first ADT: Vectors

e At a high level, a vector is an ordered collection of elements of the same type
that can grow and shrink in size.

e Each element in the vector has a specific location, or index.
o 0,12..

e All elements in a vector must be of the same type.

e \ectors are flexible when it comes to the number of elements they can store.
You can easily add and remove elements, and vectors also know their current
sSize.

Stanford “Vector” vs STL “vector”

What you want to do Stanford vector<int> std: :vector<int>
Create a new, empty vector Vector<int> vec; std: :vector<int> vec;
Create a vector with n copies of O Vector<int> vec(n); std: :vector<int> vec(n);
Create a vector with n copies of a value k Vector<int> vec(n, k); std: :vector<int> vec(n, k);
Add a value k to the end of a vector vec.add(k); vec.push back(k);
Remove all elements of a vector vec.clear(); vec.clear();
Get the element atindex i int k = vec[i]; int k = vec[i]; (does not bounds check)
Check size of vector vec.size(); vec.size();
Loop through vector by index i f:zi') (1nt i=20; i < vec.size(); fc:;) (std::size_t i = 0; i < vec.size();
Replace the element at index i vec[i] = k; vec[i] = K; (does not bounds check)

Credit:

http://web.stanford.edu/class/cs106l/lectures/lecture4.pdf

What exactly is a reference?

[he type has an ampersand
double& K\[&) after it to indicate it ic a

® References look like this:
reference to that data type

weight ref rather than the type itself.

References have
names and types,
just like regular
variables.

Types you know in C++ [\ The type has an

e int e int& ampersand [& } after it fo
e char e char& indicate it ic a reference
e double e double& to that dafa type rather
® string e string& than the type itcelf.

e Dbool e bool&

e |ong e |ong&

e \ector<int> e \ector<int>&

e \ector<char> e \ector<char>&

When we use references

e To allow helper functions to edit data structures in other functions
o But why don’t we just return a copy of the data structure?

e To avoid making new copies of large data structures in memory
o Passing data structures by reference makes your code more efficient!

e References also provide a workaround for multiple return values
o Your function can take in multiple pieces of information by reference and modify them all. In this
way you can "return" both a modified Vector and some auxiliary piece of information about how
the structure was modified. This makes it as if your function is returning two updated pieces of
information to the function that called it!

pass by value
When a parameter is passed into a function,
the new variable stores a copy of the passed
in value in memory

“Pass in a copy”

pass by reference
When a parameter is passed into a function,
the new variable stores a reference to the
passed in value, which allows you to directly
edit the original value

“Pass in the original under
a different name”

In C++...

e By default, parameters are
passed by value.

e You can choose to pass by
reference in C++ by using
references.

In C++... In Python or Java?
e By default, parameters are

passed by value.
e You can choose to pass by

reference in C++ by using

references.

In C++... In Python or Java?

e By default, parameters are
passed by value.

e You can choose to pass by

reference in C++ by using Seems like a

references. straightforward
question!

\

ferences b
\i ue”)

In C++... In Python or Java?

e By default, parameters are
passed by value.

e You can choose to pass by
reference in C++ by using
references. pasc-by-value and

pass-by-reference mean
clightly different thinge in
C++ VS. /byZ%OVI vs. java.

Becavse of the way the
languages are designed,

In C++... In Python or Java?
e By default, parameters are

passed by value. By default, Python and
e You can choose to pass by Java treat some things as
reference in C++ by using pass by value, others as

references. pass by reference.

In C++... In Python or Java?
e By default, parameters are

passed by value. By default, Python and

e You can choose to pass by Java treat some things as
reference in C++ by using pass by value, others as
references. pass by reference.

e You should pass by value for
primitives (int, string)*

e You should pass by reference
for large data structures”

*in general

Trace problem

[5-minute Ed workspace!]

https://edstem.org/us/courses/22400/workspaces/p8UjZhHxVgSHVQpcMTmbdWRCd7p5Drwz

What is a grid?

A 2D array, defined with a particular width and height

=1%) al a2
bo bl b2
co cl c2

What is a grid?

e A 2D array, defined with a particular width and height

K We <oy array inctead of vector here

becavse the dimensions are
ectabliched when the grid ic created
(but vectore can change their sizec).

=1%) al a2
bo bl b2
co cl c2

What is a grid?

A 2D array, defined with a particular width and height

Useful for spreadsheets, game boards, etc.

ao al a2
bo bl b2
co cl c2

What is a grid?

A 2D array, defined with a particular width and height

Useful for spreadsheets, game boards, etc.

Three ways to declare a grid

(@)

(@)

(@)

ao al a2
bo bl b2
co cl c2

Grid<type> gridName;
Grid<type> gridName(numRows, numCols);

Grid<type> gridName = {{rOcO, rOc1, rOc2}, {r1cO, ric1, ric2},...};

. P 1o
What is a grid- o | o | o
e A 2D array, defined with a particular width and height
%] (%] (%]
e Useful for spreadsheets, game boards, etc.
(%] (%] (%]

e Three ways to declare a grid
o Grid<type> gridName;

Grid<int> board;
board.resize(3, 3);

. P 1o
What is a grid- ol o | o
e A 2D array, defined with a particular width and height
%] (%] (%]
e Useful for spreadsheets, game boards, etc.
(%] (%] (%]

e Three ways to declare a grid
o Grid<type> gridName;

Grid<int> board; —

, IF you declare a board with wo initialization,
board.resize(3, 3);

you must resize it or reassign it before ucing
/L. ,Qeg'iziug will Gl it with default values for
that type.

. P 1o
What is a grid- >l o | 6
e A 2D array, defined with a particular width and height
6 (%] (%]
e Useful for spreadsheets, game boards, etc.
(%] (%] (%]

e Three ways to declare a grid
o Grid<type> gridName;

Grid<int> board;
board.resize(3, 3);
board[0][0] = 2;
board[1][@] = 6;

. P 1o
What is a grid- >l o | 6
e A 2D array, defined with a particular width and height
6 (%] (%]
e Useful for spreadsheets, game boards, etc.
(%] (%] (%]

e Three ways to declare a grid
o Grid<type> gridName(numRows, numCols);

Grid<int> board(3, 3);
board[0][0] = 2;
board[1][@] = 6;

. P 1o
What is a grid- > | o 1
e A 2D array, defined with a particular width and height
6 (%] 2
e Useful for spreadsheets, game boards, etc.
5 4 3

e Three ways to declare a grid
o Grid<type> gridName = {{rOcO, rOc1, rOc2}, {r1cO, ric1, ric2},...};

Grid<int> board = {{2,0,1}, {6,0,2}, {5,4,3}};

What is a grid? 20 | a1 | a2

e A 2D array, defined with a particular width and height
bo | bl | b2

e Useful for spreadsheets, game boards, etc.
co cl c2

e Three ways to declare a grid
o Grid<type> gridName;
o Grid<type> gridName(numRows, numCols);
o Grid<type> gridName = {{rOcO, rOc1, rOc2}, {r1cO, ric1, ric2},...};

e Jenny, why can’t we use a combination of Vectors to simulate a 2D matrix?

What is a grid? 20 | a1 | a2

e A 2D array, defined with a particular width and height
bo | bl | b2

e Useful for spreadsheets, game boards, etc.
co cl c2

e Three ways to declare a grid
o Grid<type> gridName;
o Grid<type> gridName(numRows, numCols);
o Grid<type> gridName = {{rOcO, rOc1, rOc2}, {r1cO, ric1, ric2},...};

e Jenny, why can’t we use a combination of Vectors to simulate a 2D matrix?
o You can! But a Grid is easier!

Grid methods

e The following methods are part of the grid collection and can be useful:

o grid.numRows (): Returns the number of rows in the grid.

o grid.numCols(): Returns the number of columns in the grid.

o grid[i][j]: selects the element in the ith row and jth column.

o grid.resize(rows, cols): Changes the dimensions of the grid and
re-initializes all entries to their default values.

o grid.inBounds(row, col): Returns true if the specified row, column
position is in the grid, false otherwise.

e For the exhaustive list, check out the

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Grid

Grid methods

e The following methods are part of the grid collection and can be useful:

o grid.numRows (): Returns the number of rows in the grid.

o grid.numCols(): Returns the number of columns in the grid.

o grid[i][j]: selects the element in the ith row and jth column.

o grid.resize(rows, cols): Changes the dimensions of the grid and
re-initializes all entries to their default values.

o grid.inBounds(row, col): Returns true if the specified row, column
position is in the grid, false otherwise.

e For the exhaustive list, check out the

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Grid

How to traverse a Grid

void printGrid(Grid<char>& grid) {
for(int r = 9; r < grid.numRows(); r++) {
for(int ¢ = 0; c < grid.numCols(); c++) {
cout << grid[r][c];

}

cout << endl;

How to traverse a Grid 'yt | e
void printGrid(Grid<char>& grid) { ‘o' "h'
for(int r = 9; r < grid.numRows(); r++) {
for(int ¢ = 0; c < grid.numCols(); c++) { g ‘W'
cout << grid[r][c];
}
cout << endl; A. yeehaw
} B. yea
ehw
} What is the output of this C. ye
function called on the eh
provided grid going to be? aw
D. None of the above

http://pollev.com/cs106bpoll

o & When poll is active, respond at pollev.com/cs106bpoll
5 Text CS106BPOLL to 22333 once to join

What is the output of printGrid going to be for this provided
grid?

O O W >

None of the above

o Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

How to traverse a Grid

r

C
void printGrid(Grid<char>& grid) {

0
0

Variables:

for(int r = 0; r < grid.numRows(); r++) { ' o
for(int ¢ = 0; c < grid.numCols(); c++) { y €
cout << grid[r][c];
} eI lhl
cout << endl;
} aI lwl
} Output:

How to traverse a Grid

r

(o]
void printGrid(Grid<char>& grid) {

0
0

Variables:

for(int r = 0; r < grid.numRows(); r++) { . o
for(int ¢ = 0; c < grid.numCols(); c++) { y €
cout << grid[r][c];
} eI Ihl
cout << endl;
} aI IWI
} Output:
y

How to traverse a Grid

r

(o]
void printGrid(Grid<char>& grid) {

0
1

Variables:

for(int r = 9; r < grid.numRows(); r++) { ' -
for(int ¢ = 9; c < grid.numCols(); c++) { y <
cout << grid[r][c];
} eI Ihl
cout << endl;
} aI IWI
h Output:
ye

How to traverse a Grid

r

(o]
void printGrid(Grid<char>& grid) {

1
0

Variables:

for(int r = 0; r < grid.numRows(); r++) { ' o

for(int ¢ = 0; c < grid.numCols(); c++) { y €
cout << grid[r][c];

} el Ihl
cout << endl;

} aI IWI

} Output:
ye
e

How to traverse a Grid

r

(o]
void printGrid(Grid<char>& grid) {

1
1

Variables:

for(int r = 0; r < grid.numRows(); r++) { ' o
for(int ¢ = 0; c < grid.numCols(); c++) { y €
cout << grid[r][c];
} eI lhl
cout << endl;
} aI IWI
} Output:
ye
eh

How to traverse a Grid

r

(o]
void printGrid(Grid<char>& grid) {

2
0

Variables:

for(int r = 0; r < grid.numRows(); r++) { ' o
for(int ¢ = 0; c < grid.numCols(); c++) { y €
cout << grid[r][c];
) e’ 'h'
cout << endl;
} a’ 'w'
} Output:
ye
eh
a

How to traverse a Grid

r

(o]
void printGrid(Grid<char>& grid) {

2
1

Variables:

for(int r = 0; r < grid.numRows(); r++) { ' o
for(int ¢ = 9; c < grid.numCols(); c++) { y €
cout << grid[r][c];
) e' 'h'
cout << endl;
} a' ‘w'
} Output:
ye
eh
aw

Common pitfalls when using Grids

e Don’t forget to specify what data type is stored in your grid
NO: Grid board; YES: Grid<char> board;

e Like Vectors and other ADTs, Grids should be passed by reference when used
as function parameters
e Watch your variable ordering with Grid indices! Rather than using i and j as
indices to loop through a grid, it’s better to use r for rows and ¢ for columns.
O [rlc]
e Unlike in other languages, you can only access cells (not individual rows).
grid[@] » doing this will cause an error!

Battleship uses

a grid!

Battleship uses

a grid!

Battleship uses

a grid!

What if we want to keep track of

all celle where a chip ic precent?

Battleship uses
a grid!

Jenny, wouldn't it be wice to label
each grid location ac a index like
we did with vectore?

Structs +
GridLocation

struct
A way to bundle different types of information
in C++ — like creating a custom data structure.

The GridLocation struct

e A pre-defined struct in the Stanford C++ libraries that makes it more convenient
to store Grid locations:

struct GridLocation {
int row; N
int col;

ctruct definition

The GridLocation struct

e A pre-defined struct in the Stanford C++ libraries that makes it more convenient
to store Grid locations:

struct GridLocation {

int row;
int col; (thece can be

} different ty,ber]

ctruct membere

The GridLocation struct

struct GridLocation {

int row;
e A pre-defined struct in the Stanford C++ libraries that int col;

makes it more convenient to store Grid locations }

e TJo declare a struct, you can either assign each of its members separately or
assign it when it’s created:

GridLocation origin = {0, 0}; GridLocation origin;
origin.row = 0;
origin.col = 0;

The GridLocation struct

struct GridLocation {

int row;
e A pre-defined struct in the Stanford C++ libraries that int col;

makes it more convenient to store Grid locations }

e TJo declare a struct, you can either assign each of its members separately or
assign it when it’s created:

GridLocation origin = {0, 0}; GridLocation origin;
P | origin.row = 0;

You can access members in a ctruct using origin.col = 0;

the dot notation (no parentheces after the

member name!)

Vector<GridLocation> shipCells; 0o | | Sixle)

GridLocation smallLeft = {0,5};
GridLocation smallRight
shipCells.add(smallLeft);
shipCells.add(smallRight);

VS.

Vector<int> rowIndices;
Vector<int> colIndices;
.add(0);
rowIndices.
.add(5);
colIndices.

rowIndices

colIndices

add(0);

add(6);

{0,6};

—
Ac an exercice on your own: Think about how you
would answer the question “Ic there a chip at (4

3)?" for each of the different reprecentations (with
and without Gridlocation structe).

The GridLocation struct

struct GridLocation {

int row;
e A pre-defined struct in the Stanford C++ libraries that int col;

makes it more convenient to store Grid locations }

e TJo declare a struct, you can either assign each of its members separately or
assign it when it’s created:

GridLocation origin = {0, 0}; GridLocation origin;
origin.row = 0;
origin.col = 0;

NOTE: Gride are not made up of GridLocation ctructs/ GridLocatione are juct

a convenient way fo ctore an index (cingle cell or a path of celle Jwithin a Grid.

The GridLocation struct

struct GridLocation {

int row;
e A pre-defined struct in the Stanford C++ libraries that int col;

makes it more convenient to store Grid locations }

e TJo declare a struct, you can either assign each of its members separately or
assign it when it’s created:

GridLocation origin = {0, 0}; GridLocation origin;
origin.row = 0;
origin.col = 0;

We can vse a GridLocation to accecs a particular cell in the grid: grid[origin]

Announcements

Announcements

e Assignment 1is due Friday, July 1, at 11:59pm PDT.

o Ifyou didn’t get to attend YEAH on Monday, we highlight recommend watching the recorded
session for getting started (will be posted soon)!
o We also recorded an extra video on !

e Sections start tomorrow! Go to to double-check your

assigned time.
o If you missed the signup deadline by Sunday, please go to the CS198 website to manually sign
up for a section with an available slot.

e Assignment 2 will be released by the end of the day on Friday.

https://stanford-pilot.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=a5804631-47ee-4f53-8c76-aec101721633
https://cs198.stanford.edu/

What is a queue?

e Like a real queue/line!

»
I\
[/
|
e First person Inis the First person
Out (FIFO)
o When you remove (dequeue) people from the queue, you remove them
from the front of the line.

e Last personinis the last person served
o When you insert (enqueue) people into a queue, you insert them at the
back (the end of the line)

Queue methods

e A queue must implement at least the following functions:
o enqueue(value) - place an entity onto the back of the queue
o dequeue() - remove an entity from the front of the queue and return it
o peek() - look at the entity at the front of the queue, but don’t remove it
o 1isEmpty() - a boolean value, true if the queue is empty, false if it has at
least one element.
m note: if you try to dequeue() or peek() an empty queue, you will get a
runtime error
e For the exhaustive list, check out the

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Queue

Queue example

Queue<int> line; // {}, empty queue
line.enqueue(42); // {42}
line.enqueue(-3); // {42, -3}
line.enqueue(17); // {42, -3, 17}

cout << line.dequeue() << endl; // 42 (lLine is {-3, 17})
cout << line.peek() << endl; // -3 (line 1s {-3, 17})

cout << line.dequeue() << endl; // -3 (lLine 1is {17})

// You can also create a queue using:
Queue<int> line = {42, -3, 17}%};

2013 Bhombeg Finance EP

What is a stack?

e Modeled like an actual stack (of pancakes)

e Only the top element in a stack is accessible.
o The Last item In is the First one Out. (LIFO)

e The push, pop, and top operations are the only
operations allowed by the stack ADT.

PUSH

The Last item In is the First one Out.
(LIFO)

Stack methods

e A stack is an abstract data type with the following behaviors/functions:
o push(value) - place an entity onto the top of the stack
o pop() - remove an entity from the top of the stack and return it
o peek() - look at the entity at the top of the stack, but don’t remove it
o 1isEmpty() - a boolean value, true if the stack is empty, false if it has at
least one element. (Note: a runtime error occurs if a pop() or peek()
operation is attempted on an empty stack.)
e For the exhaustive list, check out the

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Stack

Stack example

Stack<string> wordStack; // {}, empty stack
wordStack.push(“Kylie”); // {“Kylie”}
wordStack.push(“Jenny”); // {“Kylie”, “Jenny™}
wordStack.push(“Trip”); // {“Kylie”, “Jenny”, “Trip”}

cout << wordStack.pop() << endl; // “Trip”
cout << wordStack.peek() << endl; // “Jenny”
cout << wordStack.pop() << endl; // “Jenny” (stack is {“Kylie”})

// You can also create a stack using:
Stack<string> wordStack = {“Kylie”, “Jenny”, “Trip”};
// the “top” is the rightmost element

The First item In is the The Last item In is the

First one Out. First one Out.
(FIFO) (LIFO)
Queue Stack

The First item In is the
First one Out.
(FIFO)

4
di

Queue

The First item In is the
First one Out.

,ﬂ

Queue

The First item In is the
First one Out.

,ﬂ«

Queue

The First item In is the
First one Out.
(FIFO)

- @4t

Queue

The First item In is the
First one Out.
(FIFO)

¢
.

Queue

The First item In is the
First one Out.
(FIFO)

/3

‘

Queue

The Last item In is the
First one Out.
(LIFO)

The Last item In is the
First one Out.
(LIFO)

Stack

The Last item In is the
First one Out.
(LIFO)

Stack

The Last item In is the
First one Out.
(LIFO)

Stack

The Last item In is the
First one Out.
(LIFO)

The Last item In is the
First one Out.
(LIFO)

The Last item In is the
First one Out.
(LIFO)

The Last item In is the
First one Out.
(LIFO)

Stack

Tradeoffs with queues and stacks (vs. other ADTSs)

e What are some downsides to using a queue/stack?
o No random access. You get the front/top, or nothing.
o No side-effect-free traversal — you can only iterate over all elements in the structure by
removing previous elements first.
o No easy way to search through a queue/stack.

e What are some benefits?
o Useful for lots of problems — many real-world problems can be solved with either a LIFO or
FIFO model
o Very easy to build one from an array such that access is guaranteed to be fast. (We’ll talk more
about arrays later in the quarter, and we'll talk about what "fast" access means later this week.)
m Where would you have the top of the stack be if you build one using a Vector? Why would
that be fast?

Queue + Stack
patterns

Common patterns and pitfalls with stacks and queues

Idioms:

1. Emptying a stack/queue (both would empty one at a time)

ldiom 1. Emptying a queue/stack

Queue<int> queueldioml;

// produce: {1, 2, 3, 4, 5, 6}
for (int i = 1; i <= 6; i++) {
queueIdioml.enqueue(i);

}
while (!queueldioml.isEmpty()) {

cout << queueldioml.dequeue() << " ";
}

cout << endl;

// prints: 1 2 3456

ldiom 1. Emptying a queue/stack

Queue<int> queueldioml; Stack<int> stackIdioml;

// produce: {1, 2, 3, 4, 5, 6} // produce: {1, 2, 3, 4, 5, 6}

for (int 1 = 1; 1 <= 6; i++) { for (int 1 = 1; i <= 6; i++) {
queueIdioml.enqueue(i); stackIdioml.push(i);

} }

while (!queueldioml.isEmpty()) { while (!stackIdioml.isEmpty()) {
cout << queueldioml.dequeue() << " "; cout << stackIdioml.pop() << " ";

} }

cout << endl; cout << endl;

// prints: 1 2 3456 // prints: 6 54 3 2 1

Common patterns and pitfalls with stacks and queues

Idioms:

2. Iterating over and modifying a stack/queue = only calculate the size once
before looping

ldiom 2: lterating over and modifying queue/stack

Queue<int> queueldiom2 = {1,2,3,4,5,6};

int origQSize = queueldiom2.size();
for (int i = 0; i < origQSize; i++) {
int value = queueldiom2.dequeue();
// re-enqueue even values
if (value % 2 == 0) {
queueIdiom2.enqueue(value);

}

cout << queueldiom2 << endl;

// prints: {2, 4, 6}

ldiom 2: lterating over and modifying queue/stack

Queue<int> queueldiom2 = {1,2,3,4,5,6};

int origQSize = queueldiom2.size();
for (int i = 0; i < origQSize; i++) {
int value = queueldiom2.dequeue();
// re-enqueue even values
if (value % 2 == 0) {
queueIdiom2.enqueue(value);

}

cout << queueldiom2 << endl;

// prints: {2, 4, 6}

Stack<int> stackIdiom2 = {1,2,3,4,5,6};
Stack<int> result;

int origSSize = stackIdiom2.size();
for (int i = 0; i < origSSize; i++) {
int value = stackIdiom2.pop();
// add even values to result
if (value % 2 == 0) {
result.push(value);
}
}

cout << result << endl;

// prints: {6, 4, 2}

Common patterns and pitfalls with stacks and queues

Idioms:

2. Iterating over and modifying a stack/queue = only calculate the size once
before looping

Common bugs:

e If you edit the ADT within a loop, don’t use .size() in the loop’s
conditions! The size changes while the loop runs.

e Unlike with queues, you can’t iterate over a stack without destroying
it » think about when it might be beneficial to make a copy instead.

ADTs summary (so far)

Summary so far:

Ordered data structures Lets you access elements with
indices

Vectors (1D)

Grids (2D)

e Easily able to search through all
elements
e (Can use the indices as a way of
accessing specific cells
o myVec[1]
o myGrid[2][4]

Summary so far:

Ordered data structures Lets you access to one
element at a time (no indices)
Queues (FIFO)

Stacks (LIFO)

e Constrains the way you can
insert and access data
o Can only get top/first
o No random access
e More efficient for solving
specific LIFO/FIFO problems

Ordered ADTs with accessible
indices

Types:

e Vectors (1D)
e Grids (2D)

Traits:

e FEasily able to search through all
elements

e Can use the indices as a way of
structuring the data

Ordered ADTs where you can’t
access elements by index

Types:

e Queues (FIFO)
e Stacks (LIFO)

Traits:

e Constrains the way you can insert
and access data

e More efficient for solving specific
LIFO/FIFO problems

Attendance ticket:
https://tinyurl.com/lec5¢cs106b

Please don’t send this link to students who are not here. It’s on your honor!

https://tinyurl.com/lec5cs106b

What ADT should we
use?

For each of the tasks, pick which ADT is best suited
for the task:

The undo button in a text editor

- Jobs submitted to a printer that can also be cancelled

Vectors

- LalR requests
Grids

- Your browsing history
Queues

- Google spreadsheets
Stacks

- Call centers (“your call will be handled by the next
available agent”)

For each of the tasks, pick which ADT is best suited
for the task:

- Jobs submitted to a printer that can also be cancelled

Vectors

- LalR requests
Grids

- Your browsing history
Queues

- Google spreadsheets

- Call centers (“your call will be handled by the next
available agent”)

For each of the tasks, pick which ADT is best suited
for the task:

- The undo button in a text editor

- LalR requests
Grids

- Your browsing history

- Google spreadsheets
Stacks

- Call centers (“your call will be handled by the next
available agent”)

For each of the tasks, pick which ADT is best suited
for the task:

- The undo button in a text editor

- Jobs submitted to a printer that can also be cancelled

Vectors
Grids
- Your browsing history
- Google spreadsheets
Stacks

- Call centers (“your call will be handled by the next
available agent”)

For each of the tasks, pick which ADT is best suited
for the task:

- The undo button in a text editor
- Jobs submitted to a printer that can also be cancelled

- LalR requests
Grids

Queues
- Google spreadsheets

- Call centers (“your call will be handled by the next
available agent”)

For each of the tasks, pick which ADT is best suited
for the task:

- The undo button in a text editor

- Jobs submitted to a printer that can also be cancelled

Vectors

- LalR requests

- Your browsing history
Queues
Stacks

- Call centers (“your call will be handled by the next
available agent”)

For each of the tasks, pick which ADT is best suited
for the task:

The undo button in a text editor

- Jobs submitted to a printer that can also be cancelled

Vectors
- LalR requests
Grids
- Your browsing history
- Google spreadsheets
Stacks

What’s next?

Object-Oriented
Roadmap Programming

C++ basics

\

arrays

dynamic memory
management

linked data structures

real-world
Diagnostic oLl
Life after CS106B/
algorithmic recursive

testing analysis problem-solving

Unordered ADTs: Sets and Maps

ici Do
patricia 1
120-5661 arlotte 621 Northstar Dr.weses
A RLOTTE LINDBERG
BAUER CHAF e

O

Nested data structures =

&

