
Ordered Data Structures:
Grids, Queues, and Stacks
What’s an example of “ordered data” that you’ve

encountered in your life?
(Also grab a mask from the back desk if you don’t have one!)

https://pollev.com/cs106bpoll

https://pollev.com/cs106bpoll

vectors + grids

 stacks + queues

 sets + maps

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Midterm

real-world
algorithms

Core
Tools

User/client
Implementation

vectors + grids

 stacks + queues

 sets + maps

Roadmap

Life after CS106B!

C++ basics

User/client
Implementation

vectors + grids

 stacks + queues

 sets + maps

Roadmap

Life after CS106B!

C++ basics

User/client
Implementation

“Map” of the “container store”

“Map” of the “container store”

“Map” of the “container store”

“Map” of the “container store”

Today’s
question

When is it appropriate to
use different types of
ordered data structures?

Today’s
topics

1. Review

2. Grids

[2.5 GridLocation + structs]

3. Queues

4. Stacks

Review
(vectors and pass-by-reference)

Containers, or Abstract Data Types, or Data Structures

● Containers are powerful abstractions that allow programmers to store data in
predictable, organized ways.

● As the user, you get certain guarantees about the functionality of the container
& the properties of the data inside that specific container.

● You can use ADTs without understanding the underlying implementation!
○ That’s abstraction!

Stanford^

Note: while we specifically
use ADTs from the Stanford

C++ libraries, these
principles transcend

language boundaries

Vectors

Our first ADT: Vectors

● At a high level, a vector is an ordered collection of elements of the same type
that can grow and shrink in size.

● Each element in the vector has a specific location, or index.
○ 0, 1, 2 …

● All elements in a vector must be of the same type.

● Vectors are flexible when it comes to the number of elements they can store.
You can easily add and remove elements, and vectors also know their current
size.

Credit: CS106L

http://web.stanford.edu/class/cs106l/lectures/lecture4.pdf

What exactly is a reference?

● References look like this:

References have
names and types,
just like regular
variables. weight

1.06

do
ub

le

weight_ref

double&
The type has an ampersand
(&) after it to indicate it is a
reference to that data type
rather than the type itself.

Types you know in C++

● int
● char
● double
● string
● bool
● long
● Vector<int>
● Vector<char>

…

● int&
● char&
● double&
● string&
● bool&
● long&
● Vector<int>&
● Vector<char>&

…

The type has an
ampersand (&) after it to
indicate it is a reference
to that data type rather
than the type itself.

When we use references

● To allow helper functions to edit data structures in other functions
○ But why don’t we just return a copy of the data structure?

● To avoid making new copies of large data structures in memory
○ Passing data structures by reference makes your code more efficient!

● References also provide a workaround for multiple return values
○ Your function can take in multiple pieces of information by reference and modify them all. In this

way you can "return" both a modified Vector and some auxiliary piece of information about how
the structure was modified. This makes it as if your function is returning two updated pieces of
information to the function that called it!

pass by value
When a parameter is passed into a function,
the new variable stores a copy of the passed

in value in memory

Definition

“Pass in a copy”

pass by reference
When a parameter is passed into a function,
the new variable stores a reference to the

passed in value, which allows you to directly
edit the original value

Definition

“Pass in the original under
a different name”

In C++...
● By default, parameters are

passed by value.
● You can choose to pass by

reference in C++ by using
references.

● By default, parameters are
passed by value.

● You can choose to pass by
reference in C++ by using
references.

In C++... In Python or Java?

● By default, parameters are
passed by value.

● You can choose to pass by
reference in C++ by using
references.

In C++... In Python or Java?

Seems like a
straightforward
question!

● Parameters are
passed by value by
default.

● You can choose to
pass by reference
in C++ by using
references.

In C++... In Python or Java?

Seems like a simple,
straightforward question!

WRONG.

“Java is only
pass by value”

“Java passes
references by
value”

“Java object
variables are
simply
references”

● By default, parameters are
passed by value.

● You can choose to pass by
reference in C++ by using
references.

In C++... In Python or Java?

Because of the way the
languages are designed,
pass-by-value and
pass-by-reference mean
slightly different things in
c++ vs. python vs. java.

● By default, parameters are
passed by value.

● You can choose to pass by
reference in C++ by using
references.

In C++... In Python or Java?

By default, Python and
Java treat some things as
pass by value, others as
pass by reference.

● By default, parameters are
passed by value.

● You can choose to pass by
reference in C++ by using
references.

● You should pass by value for
primitives (int, string)*

● You should pass by reference
for large data structures*

*in general

In C++... In Python or Java?

By default, Python and
Java treat some things as
pass by value, others as
pass by reference.

Trace problem
[5-minute Ed workspace!]

https://edstem.org/us/courses/22400/workspaces/p8UjZhHxVgSHVQpcMTmbdWRCd7p5Drwz

Grids

What is a grid?

● A 2D array, defined with a particular width and height

a0 a1 a2

b0 b1 b2

c0 c1 c2

What is a grid?

● A 2D array, defined with a particular width and height

We say array instead of vector here
because the dimensions are
established when the grid is created
(but vectors can change their sizes).

a0 a1 a2

b0 b1 b2

c0 c1 c2

What is a grid?

● A 2D array, defined with a particular width and height

● Useful for spreadsheets, game boards, etc.

a0 a1 a2

b0 b1 b2

c0 c1 c2

What is a grid?

● A 2D array, defined with a particular width and height

● Useful for spreadsheets, game boards, etc.

● Three ways to declare a grid
○ Grid<type> gridName;
○ Grid<type> gridName(numRows, numCols);
○ Grid<type> gridName = {{r0c0, r0c1, r0c2}, {r1c0, r1c1, r1c2},...};

a0 a1 a2

b0 b1 b2

c0 c1 c2

What is a grid?

● A 2D array, defined with a particular width and height

● Useful for spreadsheets, game boards, etc.

● Three ways to declare a grid
○ Grid<type> gridName;

Grid<int> board;

board.resize(3, 3);

0 0 0

0 0 0

0 0 0

What is a grid?

● A 2D array, defined with a particular width and height

● Useful for spreadsheets, game boards, etc.

● Three ways to declare a grid
○ Grid<type> gridName;

Grid<int> board;

board.resize(3, 3);
If you declare a board with no initialization,
you must resize it or reassign it before using
it. Resizing will fill it with default values for
that type.

 0 0 0

0 0 0

0 0 0

What is a grid?

● A 2D array, defined with a particular width and height

● Useful for spreadsheets, game boards, etc.

● Three ways to declare a grid
○ Grid<type> gridName;

Grid<int> board;

board.resize(3, 3);

board[0][0] = 2;

board[1][0] = 6;

2 0 0

6 0 0

0 0 0

What is a grid?

● A 2D array, defined with a particular width and height

● Useful for spreadsheets, game boards, etc.

● Three ways to declare a grid
○ Grid<type> gridName(numRows, numCols);

Grid<int> board(3, 3);

board[0][0] = 2;

board[1][0] = 6;

2 0 0

6 0 0

0 0 0

What is a grid?

● A 2D array, defined with a particular width and height

● Useful for spreadsheets, game boards, etc.

● Three ways to declare a grid
○ Grid<type> gridName = {{r0c0, r0c1, r0c2}, {r1c0, r1c1, r1c2},...};

Grid<int> board = {{2,0,1}, {6,0,2}, {5,4,3}};

2 0 1

6 0 2

5 4 3

What is a grid?

● A 2D array, defined with a particular width and height

● Useful for spreadsheets, game boards, etc.

● Three ways to declare a grid
○ Grid<type> gridName;
○ Grid<type> gridName(numRows, numCols);
○ Grid<type> gridName = {{r0c0, r0c1, r0c2}, {r1c0, r1c1, r1c2},...};

● Jenny, why can’t we use a combination of Vectors to simulate a 2D matrix?

a0 a1 a2

b0 b1 b2

c0 c1 c2

What is a grid?

● A 2D array, defined with a particular width and height

● Useful for spreadsheets, game boards, etc.

● Three ways to declare a grid
○ Grid<type> gridName;
○ Grid<type> gridName(numRows, numCols);
○ Grid<type> gridName = {{r0c0, r0c1, r0c2}, {r1c0, r1c1, r1c2},...};

● Jenny, why can’t we use a combination of Vectors to simulate a 2D matrix?
○ You can! But a Grid is easier!

a0 a1 a2

b0 b1 b2

c0 c1 c2

Grid methods

● The following methods are part of the grid collection and can be useful:
○ grid.numRows(): Returns the number of rows in the grid.
○ grid.numCols(): Returns the number of columns in the grid.
○ grid[i][j]: selects the element in the ith row and jth column.
○ grid.resize(rows, cols): Changes the dimensions of the grid and

re-initializes all entries to their default values.
○ grid.inBounds(row, col): Returns true if the specified row, column

position is in the grid, false otherwise.

● For the exhaustive list, check out the Stanford Grid documentation.

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Grid

Grid methods

● The following methods are part of the grid collection and can be useful:
○ grid.numRows(): Returns the number of rows in the grid.
○ grid.numCols(): Returns the number of columns in the grid.
○ grid[i][j]: selects the element in the ith row and jth column.
○ grid.resize(rows, cols): Changes the dimensions of the grid and

re-initializes all entries to their default values.
○ grid.inBounds(row, col): Returns true if the specified row, column

position is in the grid, false otherwise.

● For the exhaustive list, check out the Stanford Grid documentation.

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Grid

How to traverse a Grid

void printGrid(Grid<char>& grid) {

 for(int r = 0; r < grid.numRows(); r++) {

 for(int c = 0; c < grid.numCols(); c++) {

 cout << grid[r][c];

 }

 cout << endl;

 }

}

How to traverse a Grid

void printGrid(Grid<char>& grid) {

 for(int r = 0; r < grid.numRows(); r++) {

 for(int c = 0; c < grid.numCols(); c++) {

 cout << grid[r][c];

 }

 cout << endl;

 }

}

'y' 'e'

'e' 'h'

'a' 'w'

What is the output of this
function called on the
provided grid going to be?
pollev.com/cs106bpoll

A. yeehaw
B. yea

ehw
C. ye
 eh
 aw
D. None of the above

http://pollev.com/cs106bpoll

How to traverse a Grid

void printGrid(Grid<char>& grid) {

 for(int r = 0; r < grid.numRows(); r++) {

 for(int c = 0; c < grid.numCols(); c++) {

 cout << grid[r][c];

 }

 cout << endl;

 }

}

'y' 'e'

'e' 'h'

'a' 'w'

Variables:
r = 0
c = 0

Output:

How to traverse a Grid

void printGrid(Grid<char>& grid) {

 for(int r = 0; r < grid.numRows(); r++) {

 for(int c = 0; c < grid.numCols(); c++) {

 cout << grid[r][c];

 }

 cout << endl;

 }

}

'y' 'e'

'e' 'h'

'a' 'w'

Variables:
r = 0
c = 0

Output:
y

How to traverse a Grid

void printGrid(Grid<char>& grid) {

 for(int r = 0; r < grid.numRows(); r++) {

 for(int c = 0; c < grid.numCols(); c++) {

 cout << grid[r][c];

 }

 cout << endl;

 }

}

'y' 'e'

'e' 'h'

'a' 'w'

Variables:
r = 0
c = 1

Output:
ye

How to traverse a Grid

void printGrid(Grid<char>& grid) {

 for(int r = 0; r < grid.numRows(); r++) {

 for(int c = 0; c < grid.numCols(); c++) {

 cout << grid[r][c];

 }

 cout << endl;

 }

}

'y' 'e'

'e' 'h'

'a' 'w'

Variables:
r = 1
c = 0

Output:
ye
e

How to traverse a Grid

void printGrid(Grid<char>& grid) {

 for(int r = 0; r < grid.numRows(); r++) {

 for(int c = 0; c < grid.numCols(); c++) {

 cout << grid[r][c];

 }

 cout << endl;

 }

}

'y' 'e'

'e' 'h'

'a' 'w'

Variables:
r = 1
c = 1

Output:
ye
eh

How to traverse a Grid

void printGrid(Grid<char>& grid) {

 for(int r = 0; r < grid.numRows(); r++) {

 for(int c = 0; c < grid.numCols(); c++) {

 cout << grid[r][c];

 }

 cout << endl;

 }

}

'y' 'e'

'e' 'h'

'a' 'w'

Variables:
r = 2
c = 0

Output:
ye
eh
a

How to traverse a Grid

void printGrid(Grid<char>& grid) {

 for(int r = 0; r < grid.numRows(); r++) {

 for(int c = 0; c < grid.numCols(); c++) {

 cout << grid[r][c];

 }

 cout << endl;

 }

}

'y' 'e'

'e' 'h'

'a' 'w'

Variables:
r = 2
c = 1

Output:
ye
eh
aw

Common pitfalls when using Grids

● Don’t forget to specify what data type is stored in your grid

NO: Grid board; YES: Grid<char> board;

● Like Vectors and other ADTs, Grids should be passed by reference when used
as function parameters

● Watch your variable ordering with Grid indices! Rather than using i and j as
indices to loop through a grid, it’s better to use r for rows and c for columns.
○ [r][c]

● Unlike in other languages, you can only access cells (not individual rows).
grid[0] → doing this will cause an error!

1 2 3 4 5 6 7 8 9

A

B

C

D

E

F

G

H

I

Battleship uses
a grid!

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

Battleship uses
a grid!

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

Battleship uses
a grid!

What if we want to keep track of
all cells where a ship is present?

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

Battleship uses
a grid!

Jenny, wouldn’t it be nice to label
each grid location as a index like
we did with vectors?

Structs +
GridLocation

struct
A way to bundle different types of information
in C++ – like creating a custom data structure.

Definition

The GridLocation struct

● A pre-defined struct in the Stanford C++ libraries that makes it more convenient
to store Grid locations:

struct GridLocation {

int row;

int col;

}

struct definition

The GridLocation struct

● A pre-defined struct in the Stanford C++ libraries that makes it more convenient
to store Grid locations:

struct GridLocation {

int row;

int col;

}

struct members
(these can be
different types)

The GridLocation struct

● A pre-defined struct in the Stanford C++ libraries that
makes it more convenient to store Grid locations

● To declare a struct, you can either assign each of its members separately or
assign it when it’s created:

GridLocation origin = {0, 0}; GridLocation origin;

origin.row = 0;

origin.col = 0;

struct GridLocation {

int row;

int col;

}

The GridLocation struct

● A pre-defined struct in the Stanford C++ libraries that
makes it more convenient to store Grid locations

● To declare a struct, you can either assign each of its members separately or
assign it when it’s created:

GridLocation origin = {0, 0}; GridLocation origin;

origin.row = 0;

origin.col = 0;

struct GridLocation {

int row;

int col;

}

You can access members in a struct using
the dot notation (no parentheses after the
member name!)

Vector<GridLocation> shipCells;

GridLocation smallLeft = {0,5};

GridLocation smallRight = {0,6};

shipCells.add(smallLeft);

shipCells.add(smallRight);

VS.

Vector<int> rowIndices;

Vector<int> colIndices;

rowIndices.add(0);

rowIndices.add(0);

colIndices.add(5);

colIndices.add(6);

As an exercise on your own: Think about how you
would answer the question “Is there a ship at (4,
3)?” for each of the different representations (with
and without GridLocation structs).

The GridLocation struct

● A pre-defined struct in the Stanford C++ libraries that
makes it more convenient to store Grid locations

● To declare a struct, you can either assign each of its members separately or
assign it when it’s created:

GridLocation origin = {0, 0}; GridLocation origin;

origin.row = 0;

origin.col = 0;

NOTE: Grids are not made up of GridLocation structs! GridLocations are just
a convenient way to store an index (single cell or a path of cells)within a Grid.

struct GridLocation {

int row;

int col;

}

The GridLocation struct

● A pre-defined struct in the Stanford C++ libraries that
makes it more convenient to store Grid locations

● To declare a struct, you can either assign each of its members separately or
assign it when it’s created:

GridLocation origin = {0, 0}; GridLocation origin;

origin.row = 0;

origin.col = 0;

We can use a GridLocation to access a particular cell in the grid: grid[origin]

struct GridLocation {

int row;

int col;

}

Announcements

Announcements

● Assignment 1 is due Friday, July 1, at 11:59pm PDT.
○ If you didn’t get to attend YEAH on Monday, we highlight recommend watching the recorded

session for getting started (will be posted soon)!
○ We also recorded an extra video on SimpleTest!

● Sections start tomorrow! Go to cs198.stanford.edu to double-check your
assigned time.

○ If you missed the signup deadline by Sunday, please go to the CS198 website to manually sign
up for a section with an available slot.

● Assignment 2 will be released by the end of the day on Friday.

https://stanford-pilot.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=a5804631-47ee-4f53-8c76-aec101721633
https://cs198.stanford.edu/

Queues

What is a queue?

● Like a real queue/line!

● First person In is the First person
Out (FIFO)
○ When you remove (dequeue) people from the queue, you remove them

from the front of the line.

● Last person in is the last person served
○ When you insert (enqueue) people into a queue, you insert them at the

back (the end of the line)

Queue methods

● A queue must implement at least the following functions:
○ enqueue(value) - place an entity onto the back of the queue
○ dequeue() - remove an entity from the front of the queue and return it
○ peek() - look at the entity at the front of the queue, but don’t remove it
○ isEmpty() - a boolean value, true if the queue is empty, false if it has at

least one element.
■ note: if you try to dequeue() or peek() an empty queue, you will get a

runtime error
● For the exhaustive list, check out the Stanford Queue documentation.

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Queue

Queue example

Queue<int> line; // {}, empty queue

line.enqueue(42); // {42}

line.enqueue(-3); // {42, -3}

line.enqueue(17); // {42, -3, 17}

cout << line.dequeue() << endl; // 42 (line is {-3, 17})

cout << line.peek() << endl; // -3 (line is {-3, 17})

cout << line.dequeue() << endl; // -3 (line is {17})

// You can also create a queue using:

Queue<int> line = {42, -3, 17};

Stacks

What is a stack?

● Modeled like an actual stack (of pancakes)

● Only the top element in a stack is accessible.
○ The Last item In is the First one Out. (LIFO)

● The push, pop, and top operations are the only
operations allowed by the stack ADT.

The Last item In is the First one Out.
 (LIFO)

Stack methods

● A stack is an abstract data type with the following behaviors/functions:
○ push(value) - place an entity onto the top of the stack
○ pop() - remove an entity from the top of the stack and return it
○ peek() - look at the entity at the top of the stack, but don’t remove it
○ isEmpty() - a boolean value, true if the stack is empty, false if it has at

least one element. (Note: a runtime error occurs if a pop() or peek()
operation is attempted on an empty stack.)

● For the exhaustive list, check out the Stanford Stack documentation.

https://web.stanford.edu/dept/cs_edu/resources/cslib_docs/Stack

Stack example

Stack<string> wordStack; // {}, empty stack

wordStack.push(“Kylie”); // {“Kylie”}

wordStack.push(“Jenny”); // {“Kylie”, “Jenny”}

wordStack.push(“Trip”); // {“Kylie”, “Jenny”, “Trip”}

cout << wordStack.pop() << endl; // “Trip”

cout << wordStack.peek() << endl; // “Jenny”

cout << wordStack.pop() << endl; // “Jenny” (stack is {“Kylie”})

// You can also create a stack using:

Stack<string> wordStack = {“Kylie”, “Jenny”, “Trip”};

// the “top” is the rightmost element

The Last item In is the
First one Out.
 (LIFO)

Stack

The First item In is the
First one Out.
 (FIFO)

Queue

The First item In is the
First one Out.
 (FIFO)

Queue

The First item In is the
First one Out.
 (FIFO)

Queue

The First item In is the
First one Out.
 (FIFO)

Queue

The First item In is the
First one Out.
 (FIFO)

Queue

The First item In is the
First one Out.
 (FIFO)

Queue

The First item In is the
First one Out.
 (FIFO)

Queue

The Last item In is the
First one Out.
 (LIFO)

Stack

The Last item In is the
First one Out.
 (LIFO)

Stack

The Last item In is the
First one Out.
 (LIFO)

Stack

The Last item In is the
First one Out.
 (LIFO)

Stack

The Last item In is the
First one Out.
 (LIFO)

Stack

The Last item In is the
First one Out.
 (LIFO)

Stack

The Last item In is the
First one Out.
 (LIFO)

Stack

The Last item In is the
First one Out.
 (LIFO)

Stack

Tradeoffs with queues and stacks (vs. other ADTs)

● What are some downsides to using a queue/stack?
○ No random access. You get the front/top, or nothing.
○ No side-effect-free traversal — you can only iterate over all elements in the structure by

removing previous elements first.
○ No easy way to search through a queue/stack.

● What are some benefits?
○ Useful for lots of problems – many real-world problems can be solved with either a LIFO or

FIFO model
○ Very easy to build one from an array such that access is guaranteed to be fast. (We’ll talk more

about arrays later in the quarter, and we'll talk about what "fast" access means later this week.)
■ Where would you have the top of the stack be if you build one using a Vector? Why would

that be fast?

Queue + Stack
patterns

Common patterns and pitfalls with stacks and queues

Idioms:

1. Emptying a stack/queue (both would empty one at a time)

Idiom 1: Emptying a queue/stack

Queue<int> queueIdiom1;

// produce: {1, 2, 3, 4, 5, 6}

for (int i = 1; i <= 6; i++) {

 queueIdiom1.enqueue(i);

}

while (!queueIdiom1.isEmpty()) {

 cout << queueIdiom1.dequeue() << " ";

}

cout << endl;

// prints: 1 2 3 4 5 6

Idiom 1: Emptying a queue/stack

Queue<int> queueIdiom1;

// produce: {1, 2, 3, 4, 5, 6}

for (int i = 1; i <= 6; i++) {

 queueIdiom1.enqueue(i);

}

while (!queueIdiom1.isEmpty()) {

 cout << queueIdiom1.dequeue() << " ";

}

cout << endl;

// prints: 1 2 3 4 5 6

Stack<int> stackIdiom1;

// produce: {1, 2, 3, 4, 5, 6}

for (int i = 1; i <= 6; i++) {

 stackIdiom1.push(i);

}

while (!stackIdiom1.isEmpty()) {

 cout << stackIdiom1.pop() << " ";

}

cout << endl;

// prints: 6 5 4 3 2 1

Common patterns and pitfalls with stacks and queues

Idioms:

1. Emptying a stack/queue
2. Iterating over and modifying a stack/queue → only calculate the size once

before looping

Idiom 2: Iterating over and modifying queue/stack

Queue<int> queueIdiom2 = {1,2,3,4,5,6};

int origQSize = queueIdiom2.size();

for (int i = 0; i < origQSize; i++) {

 int value = queueIdiom2.dequeue();

 // re-enqueue even values

 if (value % 2 == 0) {

 queueIdiom2.enqueue(value);

 }

}

cout << queueIdiom2 << endl;

// prints: {2, 4, 6}

Idiom 2: Iterating over and modifying queue/stack

Queue<int> queueIdiom2 = {1,2,3,4,5,6};

int origQSize = queueIdiom2.size();

for (int i = 0; i < origQSize; i++) {

 int value = queueIdiom2.dequeue();

 // re-enqueue even values

 if (value % 2 == 0) {

 queueIdiom2.enqueue(value);

 }

}

cout << queueIdiom2 << endl;

// prints: {2, 4, 6}

Stack<int> stackIdiom2 = {1,2,3,4,5,6};

Stack<int> result;

int origSSize = stackIdiom2.size();

for (int i = 0; i < origSSize; i++) {

 int value = stackIdiom2.pop();

 // add even values to result

 if (value % 2 == 0) {

 result.push(value);

 }

}

cout << result << endl;

// prints: {6, 4, 2}

Common patterns and pitfalls with stacks and queues

Idioms:

1. Emptying a stack/queue
2. Iterating over and modifying a stack/queue → only calculate the size once

before looping

Common bugs:

● If you edit the ADT within a loop, don’t use .size() in the loop’s
conditions! The size changes while the loop runs.

● Unlike with queues, you can’t iterate over a stack without destroying
it → think about when it might be beneficial to make a copy instead.

ADTs summary (so far)

Summary so far:
Ordered data structures Lets you access elements with

indices
Vectors (1D)
Grids (2D)

● Easily able to search through all
elements

● Can use the indices as a way of
accessing specific cells
○ myVec[1]
○ myGrid[2][4]

Summary so far:
Ordered data structures Lets you access to one

element at a time (no indices)
Queues (FIFO)
Stacks (LIFO)

● Constrains the way you can
insert and access data
○ Can only get top/first
○ No random access

● More efficient for solving
specific LIFO/FIFO problems

Ordered ADTs with accessible
indices

Types:

● Vectors (1D)
● Grids (2D)

Traits:

● Easily able to search through all
elements

● Can use the indices as a way of
structuring the data

Ordered ADTs where you can’t
access elements by index

Types:

● Queues (FIFO)
● Stacks (LIFO)

Traits:

● Constrains the way you can insert
and access data

● More efficient for solving specific
LIFO/FIFO problems

Attendance ticket:
https://tinyurl.com/lec5cs106b

Please don’t send this link to students who are not here. It’s on your honor!

https://tinyurl.com/lec5cs106b

What ADT should we
use?

For each of the tasks, pick which ADT is best suited
for the task:

Vectors

Grids

Queues

Stacks

- The undo button in a text editor

- Jobs submitted to a printer that can also be cancelled

- LaIR requests

- Your browsing history

- Google spreadsheets

- Call centers (“your call will be handled by the next
available agent”)

For each of the tasks, pick which ADT is best suited
for the task:

Vectors

Grids

Queues

Stacks

- The undo button in a text editor

- Jobs submitted to a printer that can also be cancelled

- LaIR requests

- Your browsing history

- Google spreadsheets

- Call centers (“your call will be handled by the next
available agent”)

For each of the tasks, pick which ADT is best suited
for the task:

Vectors

Grids

(Queues)

Stacks

- The undo button in a text editor

- Jobs submitted to a printer that can also be cancelled

- LaIR requests

- Your browsing history

- Google spreadsheets

- Call centers (“your call will be handled by the next
available agent”)

For each of the tasks, pick which ADT is best suited
for the task:

Vectors

Grids

Queues

Stacks

- The undo button in a text editor

- Jobs submitted to a printer that can also be cancelled

- LaIR requests

- Your browsing history

- Google spreadsheets

- Call centers (“your call will be handled by the next
available agent”)

For each of the tasks, pick which ADT is best suited
for the task:

Vectors

Grids

Queues

Stacks

- The undo button in a text editor

- Jobs submitted to a printer that can also be cancelled

- LaIR requests

- Your browsing history

- Google spreadsheets

- Call centers (“your call will be handled by the next
available agent”)

For each of the tasks, pick which ADT is best suited
for the task:

Vectors

Grids

Queues

Stacks

- The undo button in a text editor

- Jobs submitted to a printer that can also be cancelled

- LaIR requests

- Your browsing history

- Google spreadsheets

- Call centers (“your call will be handled by the next
available agent”)

For each of the tasks, pick which ADT is best suited
for the task:

Vectors

Grids

Queues

Stacks

- The undo button in a text editor

- Jobs submitted to a printer that can also be cancelled

- LaIR requests

- Your browsing history

- Google spreadsheets

- Call centers (“your call will be handled by the next
available agent”)

What’s next?

Object-Oriented
Programming

 arrays

 dynamic memory
 management

linked data structures

algorithmic
analysistesting

recursive
problem-solving

Roadmap

Life after CS106B!

C++ basics

Diagnostic

real-world
algorithms

Core
Tools

Implementation

vectors + grids

 stacks + queues

 sets + maps

User/client

Unordered ADTs: Sets and Maps

Nested data structures 🤯

